Shreyas S Rao

Learn More
Glioblastoma multiforme (GBM) tumors are one of the most deadly forms of human cancer and despite improved treatments, median survival time for the majority of patients is a dismal 12-15 months. A hallmark of these aggressive tumors is their unique ability to diffusively infiltrate normal brain tissue. To understand this behavior and successfully target the(More)
A qualitative study of four black, low-income, single mothers used in-depth interviews and participant observation to evaluate their interactions with outreach agency professionals. Three perceived aspects (disrespect, focus on deficits, and discounting parenting style differences) were associated with exclusionary (unempowering) relationships. A reciprocal(More)
Breast cancer is a leading cause of death for women, with mortality resulting from metastasis. Metastases are often detected once tumour cells affect the function of solid organs, with a high disease burden limiting effective treatment. Here we report a method for the early detection of metastasis using an implanted scaffold to recruit and capture(More)
Neural prostheses are a promising technology in the treatment of lost neural function. However, poor biocompatibility of these devices inhibits the formation of a robust neuro-electrode interface. Several factors including mechanical mismatch between the device and tissue, inflammation at the implantation site, and possible electrical damage contribute to(More)
Glioblastoma multiforme (GBM), one of the deadliest forms of human cancer, is characterized by its high infiltration capacity, partially regulated by the neural extracellular matrix (ECM). A major limitation in developing effective treatments is the lack of in vitro models that mimic features of GBM migration highways. Ideally, these models would permit(More)
Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review(More)
Aldophosphamide (NSC 254), a putative key metabolite of cyclophosphamide, has now been isolated as a cyanohydrin derivative from an incubation mixture of cyclophosphamide with mouse liver microsomes in vitro and from the plasma of a cyclophosphamide-treated patient. The cyanohydrin has been shown to be identical with an authenic synthetic sample by mass(More)
Glioblastoma multiforme (GBM) tumors, which arise from glia in the central nervous system (CNS), are one of the most deadly forms of human cancer with a median survival time of ∼1 year. Their high infiltrative capacity makes them extremely difficult to treat, and even with aggressive multimodal clinical therapies, outcomes are dismal. To improve(More)
Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting(More)
Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel(More)