Learn More
We present two novel methods for face verification. Our first method - “attribute” classifiers - uses binary classifiers trained to recognize the presence or absence of describable aspects of visual appearance (e.g., gender, race, and age). Our second method - “simile” classifiers - removes the manual labeling required for(More)
In this work, we investigate the visual appearance of real-world surfaces and the dependence of appearance on the geometry of imaging conditions. We discuss a new texture representation called the BTF (bidirectional texture function) which captures the variation in texture with illumination and viewing direction. We present a BTF database with image(More)
The problem of automatically learning object models for recognition and pose estimation is addressed. In contrast to the traditional approach, the recognition problem is formulated as one of matching appearance rather than shape. The appearance of an object in a two-dimensional image depends on its shape, reflectance properties, pose in the scene, and the(More)
A simple algorithm is described that computes the ra-diometric response function of an imaging system, from images of an arbitrar), scene taken using different exposures. The exposure is varied by changing either the aperture setting or the shutter speed. The algorithm does not require precise estimates of the exposures used. Rough estimates of the ratios(More)
Lambert's model for diffuse reflection is extensively used in computational vision. It is used explicitly by methods such as shape from shading and photometric stereo, and implicitly by methods such as binocular stereo and motion detection. For several real-world objects, the Lambertian model can prove to be a very inaccurate approximation to the diffuse(More)
Conventional video cameras have limited fields of view which make them restrictive for certain applications in computational vision. A catadioptric sensor uses a combination of lenses and mirrors placed in a carefully arranged configuration to capture a much wider field of view. One important design goal for catadioptric sensors is choosing the shapes of(More)
We present fast methods for separating the direct and global illumination components of a scene measured by a camera and illuminated by a light source. In theory, the separation can be done with just two images taken with a high frequency binary illumination pattern and its complement. In practice, a larger number of images are used to overcome the optical(More)
Many vision applications require precise measurement of scene radiance. The function relating scene radiance to image intensity of an imaging system is called the camera response. We analyze the properties that all camera responses share. This allows us to find the constraints that any response function must satisfy. These constraints determine the(More)
—An image acquired by a camera consists of measured intensity values which are related to scene radiance by a function called the camera response function. Knowledge of this response is necessary for computer vision algorithms which depend on scene radiance. One way the response has been determined is by establishing a mapping of intensity values between(More)
While real scenes produce a wide range of brightness variations , vision systems use low dynamic range image detectors that typically provide 8 bits of brightness data at each pixel. The resulting low quality images greatly limit what vision can accomplish today. This paper proposes a very simple method for significantly enhancing the dynamic range of(More)