Shre Kumar Chatterjee

Learn More
Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the(More)
Plant electrical signals often contains low frequency drifts with or without the application of external stimuli. Quantification of the randomness in plant signals in a stimulus-specific way is hindered because the knowledge of vital frequency information in the actual biological response is not known yet. Here we design an optimum Infinite Impulse Response(More)
Plants monitor their surrounding environment and control their physiological functions by producing an electrical response. We recorded electrical signals from different plants by exposing them to Sodium Chloride (NaCl), Ozone (O3) and Sulfuric Acid (H2SO4) under laboratory conditions. After applying pre-processing techniques such as filtering and drift(More)
Poor Indoor Environment Quality (IEQ) in office environments leads to worker discomfort and lost productivity. This paper provides a unique perspective into the specifically social determinants of IEQ in naturally ventilated offices and our work toward designing technology that might improve it. Based on 15 qualitative interviews we explore the rituals,(More)
In this paper we present a systematic exploration to formulate a predictive model of the human cognitive process with the changing environmental conditions at workplace. We select six different environmental conditions with small change in temperature/ventilation representative of realistic work environment having manual control. EEG data were acquired(More)
  • 1