Learn More
Thymus and activation-regulated chemokine (TARC) is a recently identified CC chemokine that is expressed constitutively in thymus and transiently in stimulated peripheral blood mononuclear cells. TARC functions as a selective chemoattractant for T cells that express a class of receptors binding TARC with high affinity and specificity. To identify the(More)
Neuropilin (previously A5) is a cell surface glycoprotein that was originally identified in Xenopus tadpole nervous tissues. In Xenopus, neuropilin is expressed on both the presynaptic and postsynaptic elements in the visual and general somatic sensory systems, suggesting a role in neuronal cell recognition. In this study, we identified a mouse homologue of(More)
The A5 antigen is a neuronal cell surface protein of Xenopus presumed to be involved in the neuronal recognition between the optic nerve fibers and the visual centers. Analyses of cDNA clones revealed that the A5 antigen is a class I membrane protein containing two different internal repeats in the extracellular segment. The first repeat bears homology to(More)
OBJECTIVE The authors studied a large number of Japanese alcoholic patients and comparison subjects to establish the genotype frequencies of alcohol dehydrogenase-2 (ADH2) and mitochondrial aldehyde dehydrogenase (ALDH2) and to quantify the relative risk for alcoholism from the results. METHOD The subjects were 655 alcoholic patients and 461 comparison(More)
The pharynx of Caenorhabditis elegans is a neuromuscular organ responsible for feeding, concentrating food by its pumping movement. A class of mutants, the eat mutants, are defective in this behavior. We have identified a novel eat gene, eat-20, encoding a unique transmembrane protein with three EGF motifs. Staining with a specific polyclonal antibody(More)
We searched for mouse homologues of the cell adhesion protein plexin which was originally found in Xenopus, and obtained a cDNA encoding a plexin-like protein. We referred to this protein as mouse plexin 1. The overall amino acid identity between mouse plexin 1 and Xenopus plexin was 84%. As in the Xenopus plexin, the extracellular segment of mouse plexin 1(More)
Immunohistochemistry by using monoclonal antibodies named A5 and B2, which specifically recognize cell surface proteins the neuropilin and the plexin, respectively, revealed that olfactory axons in Xenopus tadpoles were classified into several subgroups by virtue of the expression levels of these two cell surface molecules. The vomeronasal axons expressed(More)
Neuropilin is a cell-surface glycoprotein that was first identified in Xenopus tadpole nervous tissues and then in chicken and mouse. The primary structure of neuropilin is highly conserved among these vertebrate species. The extracellular part of the molecule is composed of three domains referred to as a1/a2, b1/b2, and c, each of which is expected to be(More)