Learn More
Without the top-down effects and the external/physical forcing, a stable coexistence of two phytoplankton species under a single resource is impossible - a result well known from the principle of competitive exclusion. Here I demonstrate by analysis of a mathematical model that such a stable coexistence in a homogeneous media without any external factor(More)
In theory, enrichment of resource in a predator-prey model leads to destabilization of the system,thereby collapsing the trophic interaction,a phenomenon referred to as "the paradox of enrichment". After it was first pro posed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review(More)
The coexistence of a large number of phytoplankton species on a seemingly limited variety of resources is a classical problem in ecology, known as 'the paradox of the plankton'. Strong fluctuations in species abundance due to the external factors or competitive interactions leading to oscillations, chaos and short-term equilibria have been cited so far to(More)
We explore the mutual dependencies and interactions among different groups of species of the plankton population, based on an analysis of the long-term field observations carried out by our group in the North-West coast of the Bay of Bengal. The plankton community is structured into three groups of species, namely, non-toxic phytoplankton (NTP), toxic(More)
The coexistence of competitive species with a shared predator is well established. The effect of 'food-value' on predator-prey dynamics has also received much attention. However, the study of a nutrient bound of prey, specifically on predator-mediated competitive-coexistence has not received much attention. Here we study the effects of the caloric content(More)
Simple predator-prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the 'paradox of enrichment'. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for(More)
Enrichment in resource availability theoretically destabilizes predator-prey dynamics (the paradox of enrichment). However, a minor change in the resource stoichiometry may make a prey toxic for the predator, and the presence of toxic prey affects the dynamics significantly. Here, theoretically we explore how, at increased carrying capacity, a toxic prey(More)
We propose and analyze a simple mathematical model for susceptible prey (S)-infected prey (I)-predator (P) interaction, where the susceptible prey population (S) is infected directly from external sources as well as through contact with infected class (I) and the predator completely avoids consuming the infected prey. The model is analyzed to obtain(More)
In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and(More)