Shoufang Xu

Learn More
Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity,(More)
Molecularly imprinted polymers (MIPs) with trinitrophenol (TNP) as a dummy template molecule capped with CdTe quantum dots (QDs) were prepared using 3-aminopropyltriethoxy silane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross linker through a seed-growth method via a sol-gel process (i.e., DMIP@QDs) for the sensing of(More)
Molecularly imprinted polymer coated quantum dot (MIP@QD) fluorescence sensors combined with ratiometric fluorescence techniques and mesoporous silica materials have been applied to detect TNT for the first time. The assay platform exhibited excellent selectivity and sensitivity with a detection limit as low as 15 nM.
Controlled/living free radical polymerization (CLRP) has been accepted as an effective technique in preparation of polymers because of its inherent advantages over traditional free radical polymerization. In this work, reversible addition-fragmentation chain transfer (RAFT) polymerization, the ideal candidate for CLRP, was applied to prepare atrazine(More)
A novel functional monomer T-IPTS, 3-isocyanatopropyltriethoxysilane (IPTS) bearing thymine (T) bases, was synthesized for imprinting Hg(2+). Then a novel Hg(2+) ionic imprinted polymers (IIPs) based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) interactions, i.e. Hg-IIPs-T, were prepared by sol-gel process for the first time in this work. The Hg-IIPs-T exhibited(More)
A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as(More)
A simple and sensitive method for the simultaneous determination of four triazines from soil, strawberry, and tomato samples was developed by selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled to micellar electrokinetic chromatography (MEKC). Using atrazine as template, the synthesized molecularly imprinted polymers (MIPs) were(More)
In the present work, double water compatible molecularly imprinted polymers (DWC-MIPs) with water compatible core and hydrophilic polymer brushes were prepared by reversible addition-fragmentation chain transfer precipitate polymerization (RAFTPP) and applied as solid-phase extraction (SPE) sorbent for selective preconcentration and specific recognition of(More)
Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric(More)