Shoko Oyama

Learn More
Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs) contribute the blood-milk barrier(More)
The mammary alveolus is a highly specialized structure that secretes milk for suckling infants during lactation. The secreting alveolus consists in alveolar epithelial cells (AECs) and myoepithelial cells and is surrounded by microvascular endothelial cells, adipocytes and several immune cell types such as macrophages and neutrophils. During normal(More)
The mammary gland is a highly specialized organ that is able to repeat development and regression (involution) of alveolar structures for milk production. Mammary involution consists in two phases. The first phase is reversible and lasts until approximately 48 h after weaning in mice. Interestingly, an extended milking interval can change the milk-secretory(More)
Mastitis, the inflammation of mammary glands resulting from bacterial infection, disrupts milk production in lactating mammary glands. In this study, we injected lipopolysaccharide (LPS), one of the endotoxins from Escherichia coli into mouse mammary glands to disrupt milk production, and we investigated the influence of LPS on nutrient uptake, synthesis,(More)
Beta-casein is a secretory protein contained in milk. Mammary epithelial cells (MECs) synthesize and secrete β-casein during lactation. However, it remains unclear how the β-casein secretion pathway is developed after parturition. In this study, we focused on prolactin (PRL), epidermal growth factor (EGF), and glucocorticoids, which increase in blood plasma(More)
  • 1