Learn More
The nature and tissue distribution of non-collagenous bone proteins synthesized by adult rat bone marrow cells, induced to differentiate in the presence of dexamethasone (DEX) and beta-glycerophosphate (beta-GP), was studied in vitro to determine the potential role of these proteins in bone formation. Northern hybridization analysis revealed a strong(More)
To determine the relationship between the expression of bone proteins and the formation of mineralized-tissue matrix, the biosynthesis of non-collagenous bone proteins was studied in cultures of fetal-rat calvarial cells, which form mineralized nodules of bone-like tissue in the presence of beta-glycerophosphate. The temporal pattern of protein synthesis in(More)
Current approaches to the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs which work in cooperation with surrounding tissues to replace organs that were(More)
To study the role of noncollagenous proteins in bone formation, the synthesis and tissue distribution of BSP (bone sialoprotein), OPN (osteopontin) and SPARC (secreted protein acidic and rich in cysteine) were analyzed using pulse-chase and continuous labeling protocols during bone formation by cultures of rat calvarial cells. Following a 1 h labeling(More)
Periosteum has been demonstrated to contain mesenchymal progenitor cells differentiating to osteoblasts, and both bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) may play important roles in cell-based approaches to bone regeneration. The purpose of this study was to evaluate the feasibility and efficacy of BMP-2 and/or(More)
BACKGROUND The mechanism by which the microthread implant preserves peri-implant crestal bone is not known. The objective of this research is to assess the effect of microthreads on the magnitude and direction of the stress at the bone-implant interface using finite element analysis modeling. METHODS Three-dimensional finite element models representing(More)
S100A4 is a member of the S100 calcium-binding protein family. S100A4 is expressed in several tissues; however, it is secreted by few cell types and its extracellular roles are unknown. In the present study we showed by in situ hybridization that periodontal ligament (PDL) cells express the S100A4 mRNA. Immunolocalization of the S100A4 protein in(More)
Pulp tissue was obtained from maxillary incisors of young adult male Wistar rats, minced and digested with 0.5% trypsin and 0.02% EGTA at 37 degrees C for 30 min. Dissociated cells were cultured with or without 10 nM dexamethasone using Eagle's minimal essential medium supplemented with 10% fetal bovine serum and 50 micrograms/ml ascorbic acid. Confluent(More)
We have reported that denbufylline, a phosphodiesterase 4 (PDE4) inhibitor, inhibits bone loss in Walker256/S tumor-bearing rats, suggesting therapeutic potentiality of a PDE4 inhibitor in osteopenia. In the present study, effects of a new PDE4 inhibitor, 1-n-butyl-3-n-propylxanthine (XT-44), in bone were evaluated in cell cultures and animal experiments.(More)
The purpose of this study is to evaluate the osteoconductivity of three different bone substitute materials: α-tricalcium phosphate (α-TCP), (β-TCP), and hydroxyapatite (HA), combined with or without simvastatin, which is a cholesterol synthesis inhibitor stimulating BMP-2 expression in osteoblasts. We used 72 Wistar rats and prepared two calvarial bone(More)