Shobhana Natarajan

Learn More
Yeast mutants lacking telomerase are capable of maintaining telomeres by an alternate mechanism that depends on homologous recombination. We show here, by using Kluyveromyces lactis cells containing two types of telomeric repeats, that recombinational telomere elongation generates a repeating pattern common in most or all telomeres in survivors that retain(More)
We have previously shown that DNA circles containing telomeric repeats and a marker gene can promote the recombinational elongation of telomeres in Kluyveromyces lactis by a mechanism proposed to involve rolling-circle DNA synthesis. Wild-type cells acquire a long tandem array at a single telomere, while telomerase deletion (ter1-delta) cells, acquire an(More)
Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces(More)
Both subtelomeric and telomeric recombination events can be greatly enhanced in Kluyveromyces lactis mutants lacking telomerase and having abnormally short telomeres. In this study, we utilized cells containing a single telomere composed of mutant repeats carrying a phenotypically silent mutation to test whether the exchange of telomeric repeats was a(More)
  • 1