Sho-ichi Yamagishi

Learn More
BACKGROUND The Japan Assessment of Pitavastatin and Atorvastatin in Acute Coronary Syndrome (JAPAN-ACS) trial demonstrated that early aggressive statin therapy in patients with ACS significantly reduces plaque volume (PV). Advanced glycation end products (AGEs) and the receptors of AGEs (RAGE) may lead to angiopathy in diabetes mellitus (DM) and may affect(More)
About 246 million people worldwide have diabetes in 2007. The global figure of people with diabetes is projected to increase to 370 million in 2030. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic nephropathy has become one of the most challenging health problems. Therapeutic options such as strict blood glucose and blood(More)
Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways,(More)
Diabetic vascular complication is a leading cause of acquired blindness, end-stage renal failure, a variety of neuropathies and accelerated atherosclerosis, which could account for disabilities and high mortality rates in patients with diabetes. Chronic hyperglycemia is essentially involved in the development and progression of diabetic micro- and(More)
OBJECTIVE Advanced glycation end products (AGEs) evoke inflammatory reactions, contributing to the development and progression of atherosclerosis. We investigated the relationship between serum AGE level and vascular inflammation. RESEARCH DESIGN AND METHODS The study involved 275 outpatients at Kurume University, Japan (189 males and 86 females; mean age(More)
Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of(More)
Advanced glycation end products (AGEs) and receptor RAGE interaction contribute to endothelial cell damage in diabetes. Several thrombogenic abnormalities are also involved in diabetic vascular complications. However, the pathological role of thrombin and protease-activated receptor-1 (PAR-1) system in AGE-induced endothelial cell (EC) damage remains(More)
Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its(More)
BACKGROUND Advanced glycation end products (AGE)-receptor for AGE (RAGE) axis and renin-angiotensin system (RAS) play a role in diabetic nephropathy (DN). Matrix metalloproteinase-2 (MMP-2) activation also contributes to DN. However, the pathological interaction among AGE-RAGE, RAS and MMP-2 in DN remains unknown. We examined here the involvement of AGE and(More)
There is accumulating evidence that advanced glycation end products (AGEs) play a role in the development and progression of chronic kidney disease (CKD). We have previously found that atorvastatin treatment significantly reduces serum levels of AGEs in type 2 diabetic patients and subjects with non-alcoholic steatohepatitis in a cholesterol(More)