Shneior Lifson

Learn More
Theories of the origin of life have proposed hypotheses to link inanimate to animate matter. The theory proposed here derived the crucial stages in the origin of animate matter directly from the basic properties of inanimate matter. It asked what were the general characteristics of the link, rather than what might have been its chemical details. Life and(More)
The electrostatic potentials for the three-dimensional structures of cholinesterases from various species were calculated, using the Delphi algorithm, on the basis of the Poisson-Boltzmann equation. We used structures for Torpedo californica and mouse acetylcholinesterase, and built homology models of the human, Bungarus fasciatus, and Drosophila(More)
We present a model for the molecular traffic of ligands, substrates, and products through the active site of cholinesterases (ChEs). First, we describe a common treatment of the diffusion to a buried active site of cationic and neutral species. We then explain the specificity of ChEs for cationic ligands and substrates by introducing two additional(More)
Two fundamental properties of animate matter, specific complexity and purposeful organization (teleonomy), are traced to their origin, applying Eigen's theory of self-organization of matter. Template-replicating copolymers possess the three dynamic properties that are essential for prebiotic evolution: autocatalysis, diversification and selection. By(More)
A model of prebiotic replication discussed by Szathmary and Maynard Smith (1997) is refined in accordance with Lifson's (1997) theory on the crucial stages in the origin of animate matter. The refined model accounts for two processes associated with replication: (1) Replicators always decompose at some rate. (2) Replicators deplete their reactants at a rate(More)