Learn More
We present a shape segmentation method for complete and incomplete shapes. The key idea is to directly optimize the decomposition based on a characterization of the expected geometry of a part in a shape. Rather than setting the number of parts in advance, we search for the smallest number of parts that admit the geometric characterization of the parts. The(More)
We define the convexity rank of a set of points to be the portion of mutually visible pairs of points out of the total number of pairs. Based on this definition of weak convexity, we introduce a spectral method that decomposes a given shape into weakly convex regions. The decomposition is applied without explicitly measuring the convexity rank. The method(More)
In this paper, we introduce a new approach to constrained clustering which treats the constraints as features. Our method augments the original feature space with additional dimensions, each of which derived from a given Cannot-link constraints. The specified Cannot-link pair gets extreme coordinates values, and the rest of the points get coordinate values(More)
  • 1