Shlomit Farkash-Amar

Learn More
The division of genomes into distinct replication time zones has long been established. However, an in-depth understanding of their organization and their relationship to transcription is incomplete. Taking advantage of a novel synchronization method ("baby machine") and of genomic DNA microarrays, we have, for the first time, mapped replication times of(More)
Recent evidence suggests that the timing of DNA replication is coordinated across megabase-scale domains in metazoan genomes, yet the importance of this aspect of genome organization is unclear. Here we show that replication timing is remarkably conserved between human and mouse, uncovering large regions that may have been governed by similar replication(More)
On most common microarray platforms many genes are represented by multiple probes. Although this is quite common no one has systematically explored the concordance between probes mapped to the same gene. Here we present an analysis of all the cases of multiple probe sets measuring the same gene on the Affymetrix U133a GeneChip and found that although in the(More)
Regulation of meiosis and sporulation in Saccharomyces cerevisiae is a model for a highly regulated developmental process. Meiosis middle phase transcriptional regulation is governed by two transcription factors: the activator Ndt80 and the repressor Sum1. It has been suggested that the competition between Ndt80 and Sum1 determines the temporal expression(More)
Microarray technology has facilitated the research of eukaryotic DNA replication on a genome-wide scale. Recent studies have shed light on the association between time of replication and chromosome structure, on the organization principles of the replication program, and on the correlation between replication timing and transcription. In this review, we(More)
Regulation of proteins across the cell cycle is a basic process in cell biology. It has been difficult to study this globally in human cells due to lack of methods to accurately follow protein levels and localizations over time. Estimates based on global mRNA measurements suggest that only a few percent of human genes have cell-cycle dependent mRNA levels.(More)
To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise genetics. We(More)
DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR). Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further(More)
Embryonic stem cells (ESCs), with their dual capacity to self-renew and differentiate, are commonly used to study differentiation, epigenetic regulation, lineage choices, and more. Using non-directed retroviral integration of a YFP/Cherry exon into mouse ESCs, we generated a library of over 200 endogenously tagged fluorescent fusion proteins and present(More)
  • 1