Shiying Li

Learn More
Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to(More)
Following peripheral nerve injury, transcriptional responses are orchestrated to regulate the expression of numerous genes in the lesioned nerve, thus activating the intrinsic regeneration program. To better understand the molecular regulation of peripheral nerve regeneration, we aimed at investigating the transcriptional landscape of dorsal root ganglia(More)
Glial dysfunction is found in a number of retinal vascular diseases but its link with blood-retinal barrier (BRB) breakdown remains poorly understood. The present study tested the hypothesis that glial dysfunction is a major contributor to the BRB breakdown that is a hallmark of retinal vascular diseases. We investigated the specificity of the purportedly(More)
After traumatic injury, peripheral nerves can spontaneously regenerate through highly sophisticated and dynamic processes that are regulated by multiple cellular elements and molecular factors. Despite evidence of morphological changes and of expression changes of a few regulatory genes, global knowledge of gene expression changes and related biological(More)
After peripheral nerve injury, the degenerative debris and inflammatory alterations at the injury site may block the elongation of regenerating axons to reach target organs. Tissue plasminogen activator (tPA), a serine protease, has a capability of degrading matrix molecules and cell adhesions. In this study, we found that either tPA or miR-340 was(More)
Peripheral nerve injures are quite common in clinical practice, and many studies have tried to explore the underlying molecular mechanisms. This study focuses on the identification and functional analysis of novel miRNAs in rat dorsal root ganglia (DRGs) following sciatic nerve resection, which is a classic model for studying peripheral nerve injury and(More)
BACKGROUND Hepatitis C is a global health problem and represents a major cause of liver disease and socioeconomic burden. Effective antiviral therapy may prevent these complications, but the current treatment for patients with chronic hepatitis C virus (HCV) infection does not produce sustained virologic response. Therefore, identification of the(More)
It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuronal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1,(More)
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In(More)
Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3'-UTR and caused both mRNA(More)