Learn More
In this paper, we present BCDL (Balanced Cell-based Dual-rail Logic), a new counter-measure against Side Channel Attacks (SCA) on cryptoprocessors implementing symmetrical algorithms on FPGA. BCDL is a DPL (Dual-rail Precharge Logic), which aims at overcoming most of the usual vulnerabilities of such counter-measures, by using specific synchronization(More)
—Detecting hardware trojans is a difficult task in general. In this article we study hardware trojan horses insertion and detection in cryptographic intellectual property (IP) blocks. The context is that of a fabless design house that sells IP blocks as GDSII hard macros, and wants to check that final products have not been infected by trojans during the(More)
Wave Dynamic Differential Logic (WDDL) is a hiding countermeasure to thrawt side channel attacks (SCA). It suffers from a vulnerability called Early Evaluation, <b>i.e.</b> calculating output before all inputs are valid. This causes delay biases in WDDL even when synthesized with positive gates. s a consequence, the design can be attacked, although with(More)
Modern field programmable gate arrays (FPGAs) are power packed with features to facilitate designers. Availability of features like large block memory (BRAM), digital signal processing cores, and embedded CPU makes the design strategy of FPGAs quite different from ASICs. FPGAs are also widely used in security-critical applications where protection against(More)
—The main challenge when implementing cryptographic algorithms in hardware is to protect them against attacks that target directly the device. Two strategies are customarily employed by malevolent adversaries: observation and differential perturbation attacks, also called SCA and DFA in the abundant scientific literature on this topic. Numerous research(More)
Security and safety critical devices must undergo penetration testing including Side-Channel Attacks (SCA) before certification. SCA are powerful and easy to mount but often need huge computation power, especially in the presence of countermeasures. Few efforts have been done to reduce the computation complexity of SCA by selecting a small subset of points(More)
Second-order side-channel attacks are used to break first-order masking protections. A practical reason which often limits the efficiency of second-order attacks is the temporal localisation of the leaking samples. Several leakage samples must be combined which means high computational power. For second-order attacks, the computational complexity is(More)