Shirong Zheng

Learn More
Diabetic cardiomyopathy is a common complication leading to heightened risk of heart failure and death. In the present report, we performed proteomic analysis on total cardiac proteins from the OVE26 mouse model of type 1 diabetes to identify protein changes that may contribute to diabetic cardiomyopathy. This analysis revealed that a surprising high(More)
We previously reported damage and elevated biogenesis in cardiac mitochondria of a type 1 diabetic mouse model and proposed that mitochondria are one of the major targets of oxidative stress. In this study, we targeted overexpression of the mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) to the heart to protect cardiac mitochondria(More)
Adriamycin (ADR) is nephrotoxic. One component of ADR-induced nephropathy may be oxidative stress. This study used a recently developed line of transgenic mice (Nmt) on the FVB background strain, which over-express the antioxidant protein metallothionein (MT) in podocytes. Cultured podocytes from Nmt mice were resistant to H(2)O(2) injury, as judged by(More)
Diabetes now accounts for >40% of patients with ESRD. Despite significant progress in understanding diabetic nephropathy, the cellular mechanisms that lead to diabetes-induced renal damage are incompletely defined. For defining changes in protein expression that accompany diabetic nephropathy, the renal proteome of 120-d-old OVE26 transgenic mice with(More)
OVE26 mice are a transgenic model of severe early-onset type 1 diabetes. These mice develop diabetes within the first weeks of life and can survive well over a year with no insulin treatment, and they maintain near normal body weight. To determine whether OVE26 mice provide a valuable model of chronic diabetic nephropathy (DN), OVE26 diabetic mice were(More)
Inflammation has a key role in diabetic nephropathy (DN) progression. Pentosan polysulfate (PPS) has been shown to decreases interstitial inflammation and glomerulosclerosis in 5/6 nephrectomized rats. Since PPS has an excellent long-term safety profile in interstitial cystitis treatment, and we recently found that old diabetic C57B6 mice develop DN(More)
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities(More)
Type 1 and Type 2 diabetic patients are at high risk of developing diabetic nephropathy (DN). Renal functional decline is gradual and there is high variability between patients, though the reason for the variability is unknown. Enough diabetic patients progress to end stage renal disease to make diabetes the leading cause of renal failure. The first(More)
The aldo-keto reductase (AKR) proteins catalyze reduction of diverse aldehydes and play detoxification roles in many organisms. Since many substrates are shared among AKR, it is generally accepted that these enzymes can functionally compensate each other in response to oxidative stress. Their overall abundances are the important factor that partially(More)
Oxidative stress is a major cause of diabetic nephropathy. Upregulation of the key antioxidative transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2), was found to prevent the development of diabetic nephropathy. The present study was designed to explore the therapeutic effect of Nrf2 induced by proteasomal inhibitor MG132 at a low dose(More)