Learn More
The Rad23/Rad4 nucleotide excision repair (NER) protein complex functions at an early stage of the NER reaction, possibly promoting the recognition of damaged DNA. Here we show that Rad4 protein is ubiquitinated and degraded in response to ultraviolet (UV) radiation, and identify a novel cullin-based E3 ubiquitin ligase required for this process. We also(More)
Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation-induced DNA damage, increased histone H3 acetylation at lysine 9 and 14(More)
Nucleotide excision repair (NER) in eukaryotes removes DNA base damage as an oligonucleotide in a complex series of reactions. The nature of the dual incision reactions on either side of the damaged base has been extensively investigated. However, the precise mechanism of cleavage of the phosphodiester backbone of the DNA by the NER endonucleases and how(More)
The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their(More)
Global genome nucleotide excision repair (GG-NER) removes DNA damage from nontranscribing DNA. In Saccharomyces cerevisiae, the RAD7 and RAD16 genes are specifically required for GG-NER. We have reported that autonomously replicating sequence-binding factor 1 (ABF1) protein forms a stable complex with Rad7 and Rad16 proteins. ABF1 functions in(More)
In recent years a great deal of progress has been made in understanding how the various DNA repair mechanisms function when DNA is assembled into chromatin. In the case of nucleotide excision repair, a core group of DNA repair proteins is required in vitro to observe DNA repair activity in damaged DNA devoid of chromatin structure. This group of proteins is(More)
Genotoxins cause DNA damage, which can result in genomic instability. The genetic changes induced have far-reaching consequences, often leading to diseases such as cancer. A wide range of genotoxins exists, including radiations and chemicals found naturally in the environment, and in man-made forms created by human activity across a variety of industries.(More)
A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we(More)
We have developed an end-labelling approach to map the positions of nucleosomes and protein binding sites at nucleotide resolution by footprinting micrococcal nuclease (MNase)-sensitive sites. Using this approach we determined that the MFA2 gene and its upstream control regions have four positioned nucleosomes when transcription is repressed in mating type(More)
Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the(More)