Shirli Bar-David

Learn More
Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch(More)
Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population's long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic(More)
The introduction of chronic, infectious diseases by colonizing populations (invasive or reintroduced) is a serious hazard in conservation biology, threatening the original host and other spillover species. Most research on spatial invasion of diseases has pertained to established host populations, either at steady state or fluctuating through time. Within a(More)
The evolution of disease requires a firm understanding of heterogeneity among pathogen strains and hosts with regard to the processes of transmission, movement, recovery, and pathobiology. In this chapter, we build on the basic methodologies outlined in the previous chapter to address the question of how to model the invasion and spread of diseases in(More)
Noninvasive genetic sampling has increasingly been used in ecological and conservation studies during the last decade. A major part of the noninvasive genetic literature is dedicated to the search for optimal protocols, by comparing different methods of collection, preservation and extraction of DNA from noninvasive materials. However, the lack of(More)
Movement of animals is a key process affecting population dynamics. Information on factors that affect pathway use is essential for identifying and protecting pathways, and important for maintaining connectivity among populations. We present an innovative, non-invasive, approach for predicting pathways of reintroduced Asiatic wild ass (Equus hemionus) in(More)
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of(More)
Understanding the dynamics of genetic structures which arise during a population’s range expansion can be applied to the conservation of recovering species and species that are shifting their range. Theoretical models, supported by several empirical findings, have indicated that fine-scaled genetic structure can arise at the wave front of a spatially(More)
Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is(More)
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore's space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat(More)