Tobin A Silver2
Chris K Rhea2
Michel J. H. Heijnen2
Christopher K Rhea2
2Tobin A Silver
2Chris K Rhea
2Michel J. H. Heijnen
2Christopher K Rhea
Learn More
Routine activities performed while standing and walking require the ability to appropriately and continuously modulate postural movements as a function of a concurrent task. Changes in task-dependent postural control contribute to the emergence, maturation, and decline of complex motor skills and stability throughout the lifespan.
Visual information regarding obstacle position and size is used for planning and controlling adaptive gait. However, the manner in which visual cues in the environment are used in the control of gait is not fully known. This research examined the effect of obstacle position cues on the lead and trail limb trajectories during obstacle avoidance with and(More)
Discrete wavelet analysis is used to resolve the center of pressure time series data into several timescale components, providing new insights into postural control. Healthy young and elderly participants stood quietly with their eyes open or closed and either performed a secondary task or stood quietly. Without vision, both younger and older participants(More)
The roles of visual exteroception (information regarding environmental characteristics) and exproprioception (the relation of body segments to the environment) during gait adaptation are not fully understood. The purpose of this study was to determine how visual exteroception regarding obstacle characteristics provided during obstacle crossing modified foot(More)
The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs.(More)
The neuromuscular system used to stabilize upright posture in humans is a nonlinear dynamical system with time delays. The analysis of this system is important for improving balance and for early diagnosis of neuromuscular disease. In this work, we study the dynamic coupling between the neuromuscular system and a balance board-an unstable platform often(More)
During locomotion over uneven terrain, gait must be adapted to avoid a trip. In the event of a foot-obstacle contact, the body reactively responds to the perturbation. However, it is unknown if any proactive adjustments are made in subsequent strides to reduce the likelihood of another contact, and how long any proactive adaptations persist. This study(More)
OBJECTIVE To test the hypotheses that kinematic data of the sagittal motion of canine hind limbs during walking obtained with a 2-dimensional (2-D) system correlate well with those obtained with a 3-dimensional (3-D) system and that the data obtained with the 2-D system are repeatable. ANIMALS 6 adult dogs with no evidence of lameness. PROCEDURES Hind(More)
During everyday life, healthy adults occasionally trip over an obstacle that they knew was there. These ‘spontaneous’ trips can provide insight into the circumstances leading to trips and falls. The goal of this study was to describe the errors in foot placement and/or foot elevation that resulted in a spontaneous contact with a fixed, visible obstacle in(More)