#### Filter Results:

#### Publication Year

2000

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

This article points out an important source of inefficiency in Platt's sequential minimal optimization (SMO) algorithm that is caused by the use of a single threshold value. Using clues from the KKT conditions for the dual problem, two threshold parameters are employed to derive modifications of SMO. These modified algorithms perform significantly faster… (More)

MOTIVATION
This paper gives a new and efficient algorithm for the sparse logistic regression problem. The proposed algorithm is based on the Gauss-Seidel method and is asymptotically convergent. It is simple and extremely easy to implement; it neither uses any sophisticated mathematical programming software nor needs any matrix operations. It can be applied… (More)

In this paper we give a new fast iterative algorithm for support vector machine (SVM) classifier design. The basic problem treated is one that does not allow classification violations. The problem is converted to a problem of computing the nearest point between two convex polytopes. The suitability of two classical nearest point algorithms, due to Gilbert,… (More)

This paper points out an important source of inefficiency in Smola and Schölkopf's sequential minimal optimization (SMO) algorithm for support vector machine (SVM) regression that is caused by the use of a single threshold value. Using clues from the KKT conditions for the dual problem, two threshold parameters are employed to derive modifications of SMO… (More)

Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based… (More)

— This paper gives an efficient algorithm for tracking the solution curve of sparse logistic regression with respect to the ¢ ¡ regularization parameter. The algorithm is based on approximating the logistic regression loss by a piecewise quadratic function, using Rosset and Zhu's path tracking algorithm on the approximate problem, and then applying a… (More)