Shira Cohen

Learn More
The anti-inflammatory effect of adenosine was previously found to be mediated via activation of the A3 adenosine receptor (A3AR). The aim of the present study was to decipher the molecular mechanism involved with the inhibitory effect of IB-MECA, an A3AR agonist, on adjuvant-induced arthritis. The adjuvant-induced arthritis rats responded to IB-MECA(More)
The A3 adenosine receptor (A3AR) is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand(More)
The emerging understanding of the molecular basis of olfactory mechanisms allows one to answer some long-standing questions regarding the complex recognition machinery involved. The ability of the olfactory system to detect chemicals at sub-nanomolar concentrations is explained by a plethora of amplification devices, including the coupling of receptors to(More)
  • 1