Shiping Liao

Learn More
We developed a DNA nanomechanical device that enables the positional synthesis of products whose sequences are determined by the state of the device. This machine emulates the translational capabilities of the ribosome. The device has been prototyped to make specific DNA sequences. The state of the device is established by the addition of DNA set strands.(More)
We present a designed cyclic DNA motif that consists of six DNA double helices that are connected to each other at two crossover sites. DNA double helices with 10.5 nucleotide pairs per turn facilitate the programming of DNA double crossover molecules to form hexagonally symmetric arrangements when the crossover points are separated by seven or fourteen(More)
We have used DNA double crossover (DX) molecules to produce a translation system that generates unique molecular products. The particular species of DX molecule used contains an even number of half-turns between crossover points, so there is a continuous strand on both sides of the molecule. One of these strands acts as the input strand containing the(More)
In recent years, the chemistry of DNA has expanded from biological systems to nanotechnology. The generalization of the biological processes of reciprocal exchange leads to stable branched motifs that can be used for the construction of DNA-based geometrical and topological objects, arrays and nanomechanical devices. The information in DNA is the basis of(More)
Holliday junctions are intermediates in genetic recombination. They consist of four strands of DNA that flank a branch point. In natural systems, their sequences have 2-fold (homologous) sequence symmetry. This symmetry enables the molecules to undergo an isomerization, known as branch migration, that relocates the site of the branch point. Branch migration(More)
  • 1