Shiori Minabe

Learn More
Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin-releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin-GPR54 signalling in the(More)
Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the(More)
Pulsatile secretion of GnRH plays a pivotal role in follicular development via stimulating tonic gonadotropin secretion in mammals. Kisspeptin neurons, located in the arcuate nucleus (ARC), are considered to be an intrinsic source of the GnRH pulse generator. The present study aimed to determine ARC-specific enhancer(s) of the Kiss1 gene by an in vivo(More)
Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on(More)
Puberty in mammals is timed by an increase in gonadotropin-releasing hormone (GnRH) secretion. Previous studies have shown involvement of the two neuropeptides, kisspeptin and neurokinin B (NKB), in controlling puberty onset. Little is known about the role of the other key neuropeptide, dynorphin, in controlling puberty onset, although these three(More)
Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. A number of studies have suggested that the brain is masculinized or defeminized by estradiol converted from testicular androgens in perinatal period in rodents. However, the mechanisms of estrogen action resulting in(More)
Follicular development and ovulation are strongly suppressed during lactation in mammals via a profound suppression of gonadotrophin secretion. The present study aimed to examine the role of oestrogen feedback action in suppressing luteinising hormone (LH) secretion and hypothalamic kisspeptin expression during the latter half of lactation. Plasma LH(More)
Puberty is associated with an increase in gonadotropin secretion as a result of an increase in gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is considered to play a key role in puberty onset in many mammalian species, including rodents, ruminants and primates. The present study aimed to determine if changes in hypothalamic expression of the(More)
Exposure to estrogen during the developmental period causes reproductive dysfunction in mammals, as the developing brain is highly sensitive to estrogens. Here we report that long-term exposure to supraphysiological doses of estrogen during the neonatal critical period causes an irreversible suppression of Kiss1/kisspeptin expression in the arcuate nucleus(More)
After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals.(More)