Learn More
GABA, a major inhibitory neurotransmitter in the adult CNS, is excitatory at early developmental stages as a result of the elevated intracellular Cl- concentration ([Cl-]i). This functional switch is primarily attributable to the K+-Cl- co-transporter KCC2, the expression of which is developmentally regulated in neurons. Previously, we reported that KCC2(More)
Na+, K+-ATPase 2 subunit gene (Atp1a2) knock-out homozygous mice (Atp1a2-/-) died immediately after birth resulting from lack of breathing. The respiratory-related neuron activity in Atp1a2-/- was investigated using a brainstem-spinal cord en bloc preparation. The respiratory motoneuron activity recorded from the fourth cervical ventral root (C4) was(More)
Fast inhibitory synaptic transmission is primarily mediated by synaptically released gamma-aminobutyric acid (GABA) acting on postsynaptic GABA(A) receptors. GABA acting on GABA(A) receptors produces not only phasic but also tonic inhibitions by persistent activation of extrasynaptic receptors. However, the mechanistic characteristics of tonic inhibition in(More)
Mutations of genes encoding alpha4, beta2, or alpha2 subunits (CHRNA4, CHRNB2, or CHRNA2, respectively) of nAChR [neuronal nicotinic ACh (acetylcholine) receptor] cause nocturnal frontal lobe epilepsy (NFLE) in human. NFLE-related seizures are seen exclusively during sleep and are characterized by three distinct seizure phenotypes: "paroxysmal arousals,"(More)
gamma-Aminobutyric acid, a major inhibitory neurotransmitter within the adult central nervous system, is also known to be excitatory at early developmental stages due to the elevated intracellular Cl(-) concentration. This functional change is primarily attributable to a K(+)-Cl(-) cotransporter, KCC2, the expression of which is developmentally regulated in(More)
GABA is the main inhibitory neurotransmitter in the adult brain, which causes Cl- influx into the cell via GABAA receptors. The direction of Cl- inflow is dependent on the Cl- gradient across the membrane. Cation-Cl- cotransporters have been considered to play pivotal roles in controlling intracellular Cl- concentration ([Cl-]i) of neurons; hence, they(More)
We investigated the effect of Zonisamide (ZNS), a newer anti-epileptic drug, on field potentials and neuropropagation in rat frontal cortex, with the aid of the 64-channel multi-electrode dish (MED64) system. The amplitude and propagation of field potentials were expressed dimensionally in the MED64 system. ZNS (3-100 microM) inhibited the amplitude and(More)
We have generated transgenic rats expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The expression of the eGFP gene and strong fluorescence were observed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the suprachiasmatic nucleus (SCN) in transgenic rats. The hypothalamo-neurohypophyseal(More)
Recent clinical and basic studies have demonstrated that hyperactivation of interleukin-1beta (IL-1beta) plays important roles in generation of febrile and epileptic seizures. To clarify this mechanism, the present study determined the effects of IL-1beta on Ca2+-associated releases of glutamate and GABA in mouse hippocampus. Both basal and K+-evoked GABA(More)
The P2X receptor is a receptor-gated cationic channel that responds to ATP. The quantification of P2X mRNA expression in dorsal root ganglion (DRG) provides important information for neuropathic pain studies. We developed a rapid and sensitive external-standard-based real-time quantitative PCR assay for the quantification of mRNA of P2X receptors in mouse(More)