Shintaro Ishiwata

Learn More
BACKGROUND At the basis of the Frank-Starling mechanism is the intrinsic ability of cardiac muscle to produce active tension in response to stretch. Titin, a giant filamentous molecule involved in passive tension development, is intimately associated with the thick filament in the sarcomere. Titin may therefore contribute to active tension development by(More)
The unbinding and rebinding of motor proteins and their substrate filaments are the main components of sliding movement. We have measured the unbinding force between an actin filament and a single motor molecule of muscle, myosin, in the absence of ATP, by pulling the filament with optical tweezers. The unbinding force could be measured repeatedly on the(More)
The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L)(More)
1. We investigated the effect of acidosis on the sarcomere length (SL) dependence of tension generation, in comparison with the effect of inorganic phosphate (P(i)), in rat skinned ventricular trabeculae. The shift of the mid-point of the pCa-tension relationship associated with an increase in SL from 1.9 to 2.3 microm (DeltapCa(50)) was studied. 2.(More)
To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform(More)
The muscle contractile apparatus has a highly ordered liquid crystalline structure. The molecular mechanism underlying the formation of this apparatus remains, however, to be elucidated. Selective removal and reconstitution of the components are useful means of examining this mechanism. In addition, this approach is a powerful technique for examining the(More)
We examined whether or not purified actin binds to the ends of thin filaments in rabbit skeletal myofibrils. Phase-contrast, fluorescence, and electron microscopic observations revealed that actin does not bind to the ends of thin filaments of intact myofibrils. However, in I-Z-I brushes prepared by dissolving thick filaments at high ionic strength, marked(More)
A magnetic skyrmion is a topologically stable particle-like object that appears as a vortex-like spin texture at the nanometer scale in a chiral-lattice magnet. Skyrmions have been observed in metallic materials, where they are controllable by electric currents. Here, we report the experimental discovery of magnetoelectric skyrmions in an insulating(More)
The length of sarcomeres in isolated myofibrils fixed at both ends spontaneously oscillates when MgADP and Pi coexist with MgATP in the absence of Ca2+ (Okamura, N., and S. Ishiwata, 1988. J. Muscle Res. Cell. Motil. 9:111-119). Here, we report that MgADP and Pi function as an activator and an inhibitor, respectively, of tension development of single(More)
Load dependence of the lifetime of the rigor bonds formed between a single myosin molecule (either heavy meromyosin, HMM, or myosin subfragment-1, S1) and actin filament was examined in the absence of nucleotide by pulling the barbed end of the actin filament with optical tweezers. For S1, the relationship between the lifetime (tau) and the externally(More)