Shinsuke Nakayama

Learn More
Ca(2+) channel properties of pig and human bladder smooth muscle were investigated utilizing standard whole-cell patch clamp techniques. Both the amplitude obtained and the current density of Ca(2+) channel current evoked by step depolarization were larger in human than in pig myocytes. The inward currents were sensitive to an L-type Ca(2+) channel(More)
1. In smooth muscle isolated from the guinea-pig stomach, cyanide (CN) and iodoacetic acid (IAA) were applied to block oxidative phosphorylation and glycolysis, respectively. Effects of IAA on generation of spontaneous mechanical and electrical activities were systematically investigated by comparing those of CN. Spontaneous activity ceased in 10-20 min(More)
Intracellular Ca(2+) ([Ca(2+)](i)) oscillations seen in interstitial cells of Cajal (ICCs) are considered to be the primary pacemaker activity in the gut. Here, we show evidence that periodic Ca(2+) release from intracellular Ca(2+) stores produces [Ca(2+)](i) oscillations in ICCs, using cell cluster preparations isolated from mouse ileum. The pacemaker(More)
Interstitial cells of Cajal (ICC) are considered to be pacemaker cells in gastrointestinal tracts. ICC generate electrical rhythmicity (dihydropyridine-insensitive) as slow waves and drive spontaneous contraction of smooth muscles. Although cytosolic Ca(2+) has been assumed to play a key role in pacemaking, Ca(2+) movements in ICC have not yet been examined(More)
Appropriate gastrointestinal motility is essential to properly control the body energy level. Intracellular Ca2+ ([Ca2+]i) oscillations in interstitial cells of Cajal (ICCs; identified with c-Kit immunoreactivity) are considered to be the primary mechanism for the pacemaker activity in gastrointestinal motility. In the present study, RT-PCR examinations(More)
The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The(More)
Nuclear magnetic resonance (NMR) spectroscopy of the heart is normally carried out using whole heart preparations under coronary perfusion. In such preparations, either radical changes in ionic composition of the perfusate or applications of numerous drugs would affect coronary microcirculation. This report communicates the first (31)P NMR spectroscopy(More)
The general and specific properties of pacemaker cells, including Kit-negative cells, that are distributed in gastrointestinal, urethral and uterine smooth muscle tissues, are discussed herein. In intestinal tissues, interstitial cells of Cajal (ICC) are heterogeneous in both their forms and roles. ICC distributed in the myenteric layer (ICC-MY) act as(More)
The urinary bladder pressure during micturition consists of two components: an initial, phasic component and a subsequent, sustained component. To investigate the excitation mechanisms underlying the sustained pressure, we recorded from membranes of isolated detrusor cells from the pig, which can be used as a model for human micturition. Parasympathomimetic(More)
Endothelin-1 (ET-1) is a powerful vasoconstricting peptide. Recent studies showed synthesis of ET-1 and the presence of ET receptors in urinary bladder smooth muscle cells. In the present study, we investigated the possible role of ET-1 in detrusor contraction and its underlying mechanisms in terms of electrical activity. ET-1 caused dose-dependent tonic(More)