Learn More
Astrocytes, the most abundant glial cell type in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. In response to a brain injury, astrocytes proliferate and become hypertrophic with an increased expression of intermediate filament proteins. This process is collectively referred to as reactive astrocytosis. Lipocalin(More)
Astrocytes provide structural and functional support for neurons, as well as display neurotoxic or neuroprotective phenotypes depending upon the presence of an immune or inflammatory microenvironment. This study was undertaken to characterize multiple phenotypes of activated astrocytes and to investigate the regulatory mechanisms involved. We report that(More)
The secreted protein lipocalin-2 (LCN2) has been implicated in diverse cellular processes, including cell morphology and migration. Little is known, however, about the role of LCN2 in the CNS. Here, we show that LCN2 promotes cell migration through up-regulation of chemokines in brain. Studies using cultured glial cells, microvascular endothelial cells, and(More)
Activated macrophages are classified into two different forms: classically activated (M1) or alternatively activated (M2) macrophages. The presence of M1/M2 phenotypic polarization has also been suggested for microglia. Here, we report that the secreted protein lipocalin 2 (LCN2) amplifies M1 polarization of activated microglia. LCN2 protein (EC 1 μg/ml),(More)
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the(More)
Microglia are brain-resident immune cells playing a pivotal role in the neuroinflammation. Previously, it has been shown that immunostimulation protects microglial cells against nitric oxide toxicity. Herein, we report that heme oxygenase-1 (HO-1) mediates the protective effects of immunostimulation. Pro-inflammatory activation of BV-2 microglial cells with(More)
Activated microglia are thought to undergo apoptosis as a self-regulatory mechanism. To better understand molecular mechanisms of the microglial apoptosis, apoptosis-resistant variants of microglial cells were selected and characterized. The expression of lipocalin 2 (lcn2) was significantly down-regulated in the microglial cells that were resistant to(More)
BACKGROUND AND PURPOSE Gangliosides, sialic acid-containing glycosphingolipids, abundant in brain, are involved in neuronal function and disease, but the precise molecular mechanisms underlying their physiological or pathological activities are poorly understood. In this study, the pathological role of gangliosides in the extracellular milieu with respect(More)
Proteomic analysis of cerebrospinal fluid (CSF) samples derived from patients with Alzheimer's disease (AD) or Parkinson's disease (PD) was performed. On the basis of liquid chromatography-tandem mass spectrometry, two-dimensional gel electrophoresis analysis, and Western blot validation, it was found that the level of soluble form of monocyte(More)
Microglia, as the phagocytes of the central nervous system, play an important role in the recognition, engulfment, and clearance of apoptotic cells and invading microbes. Proteins secreted from activated glial cells may affect microglial phagocytic activity. Secreted proteins of mixed glial cells stimulated with lipopolysaccharide (LPS) and interferon-γ(More)