Shinjiro Sueda

Learn More
We describe an automatic technique for generating the motion of tendons and muscles under the skin of a traditionally animated character. This is achieved by integrating the traditional animation pipeline with a novel biomechanical simulator capable of dynamic simulation with complex routing constraints on muscles and tendons. We also describe an algorithm(More)
We present a new discrete velocity-level formulation of frictional contact dynamics that reduces to a pair of coupled projections and introduce a simple fixed-point property of this coupled system. This allows us to construct a novel algorithm for accurate frictional contact resolution based on a simple staggered sequence of projections. The algorithm(More)
The aim of this study was to develop an objective evaluation system for the masticatory function. This system used paraffin wax cubes as a test food, which had six red- and green-coloured layers so that each of the six surfaces showed a pseudo-checkered pattern. A total of 100 paraffin cubes were chewed by 37 subjects and the images of these samples were(More)
We present an interactive design system that allows non-expert users to create animated mechanical characters. Given an articulated character as input, the user iteratively creates an animation by sketching motion curves indicating how different parts of the character should move. For each motion curve, our framework creates an optimized mechanism that(More)
We present a method for transforming a 3D object into a cube or a box using a continuous folding sequence. Our method produces a single, connected object that can be physically fabricated and folded from one shape to the other. We segment the object into voxels and search for a voxel-tree that can fold from the input shape to the target shape. This involves(More)
A significant challenge in applications of computer animation is the simulation of ropes, cables, and other highly constrained strandlike physical curves. Such scenarios occur frequently, for instance, when a strand wraps around rigid bodies or passes through narrow sheaths. Purely Lagrangian methods designed for less constrained applications such as hair(More)
We present a novel approach for simulating thin hyperelastic skin. Real human skin is only a few millimeters thick. It can stretch and slide over underlying body structures such as muscles, bones, and tendons, revealing rich details of a moving character. Simulating such skin is challenging because it is in close contact with the body and shares its(More)
With existing programming tools, writing high-performance simulation code is labor intensive and requires sacrificing readability and portability. The alternative is to prototype simulations in a high-level language like Matlab, thereby sacrificing performance. The Matlab programming model naturally describes the behavior of an entire physical system using(More)
The objective of the study was to assess validity and reliability of a newly developed method for evaluating mixing ability of masticatory function. A two-coloured paraffin wax cube was used as a test food in the mixing ability test. Eleven full dentate and 33 denture wearers participated in the validity assessment. They were divided into three groups(More)