Shinjiro Kanae

Learn More
Previous estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a lack of observational data and by the model dependence of computational estimates. To counter the second limitation, a dozen climate-modeling groups have recently performed the same highly controlled numerical experiment as part of a(More)
The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land– atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric(More)
Region-to-grid source–receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission(More)
  • T Oki, S Kanae
  • Water science and technology : a journal of the…
  • 2004
Global virtual water trade was quantitatively estimated and evaluated. The basic idea of how to estimate unit requirement of water resources to produce each commodity is introduced and values for major agricultural and stock products are presented. The concept of virtual water and the quantitative estimates can help in assessing a more realistic water(More)
This study has conducted a comprehensive model evaluation to help identify major uncertainties of regional air quality model in predicting long-range transport and deposition of acidifying substances in East Asia. Annual predictions of the Community Multiscale Air Quality (CMAQ) model are carried out at two horizontal scales: an 81 km domain over East Asia(More)
A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past(More)
This study has analyzed the global nitrogen loading of rivers resulting from atmospheric deposition, direct discharge, and nitrogenous compounds generated by residential, industrial, and agricultural sources. Fertilizer use, population distribution, land cover, and social census data were used in this study. A terrestrial nitrogen cycle model with a 24-h(More)
Artificial Neural Network (ANN) is a flexible and popular tool for predicting the non-linear behavior in the environmental system. Here, the feed-forward ANN model was used to investigate the relationship among the land use, fertilizer, and hydrometerological conditions in 59 river basins over Japan and then applied to estimate the monthly river total(More)