Learn More
In the last few years, a lot of publications suggested that disabling cerebellar ataxias may develop through immune-mediated mechanisms. In this consensus paper, we discuss the clinical features of the main described immune-mediated cerebellar ataxias and address their presumed pathogenesis. Immune-mediated cerebellar ataxias include cerebellar ataxia(More)
In the cat, the cerebellum projects via the ventroanterior-ventrolateral (VA-VL) complex of the thalamus to the motor and premotor cortices and also to the parietal association cortex. Cerebellar inputs to each of these regions have been characterized electrophysiologically by depth profiles of cortical potentials following stimulation of the brachium(More)
Anticipating the timing of behaviorally relevant events is crucial for organizing movement. The time to initiate actions based on events (i.e., reaction time (RT)) is a useful measure to quantify states of anticipation. Few studies have examined how anticipation affects the timing of limb movements. We addressed this question behaviorally with two macaque(More)
An accurate estimate of elapsed time is essential for anticipating the timing of future events. Here, we show that the ability to estimate elapsed time on a reaction time (RT) task improved with training during which human participants learned to anticipate the onset of a "Go" signal. In each trial, a warning signal preceded the Go signal by a temporal(More)
A central problem in motor research has been to understand how sensory signals are transformed to generate a goal-directed movement. This problem has been formulated as a set of coordinate transformations that begins with an extrinsic coordinate frame representing the spatial location of a target and ends with an intrinsic coordinate frame describing muscle(More)
We investigated the axonal morphology of single corticothalamic (CT) neurons of the motor cortex (Mx) in the cat thalamus, using a neuronal tracer, biotinylated dextran amine (BDA). After localized injection of BDA into the Mx, labeled CT axons were found ipsilaterally in the thalamic reticular nucleus (TRN), the ventroanterior-ventrolateral complex(More)
The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN) that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory(More)
This study was performed to investigate the pattern of input and the pathways from the six semicircular canals to motoneurons of various neck muscles in anesthetized cats. Intracellular postsynaptic potentials from neck motoneurons were recorded in response to electrical stimulation of the six ampullary nerves. The results showed that motoneurons of a(More)
In the rodent somatosensory system, stimulus information received by the whiskers is relayed to the barrel cortex via two parallel pathways, the lemniscal pathway and the paralemniscal pathway. The lemniscal pathway includes the principal trigeminal nucleus (Pr5) and the ventral posteromedial thalamic nucleus (VPm). The paralemniscal pathway includes the(More)
Which brain sites represent the final form of motor commands that encode temporal patterns of muscle activities? Here, we show the possible brain sites which have activity equivalent to the motor commands with functional magnetic resonance imaging (fMRI). We hypothesized that short-temporal patterns of movements or stimuli are reflected in(More)