Learn More
Multivariate statistical process control (MSPC) has been successfully applied to chemical processes. In order to improve the performance of fault detection, two kinds of advanced methods, known as moving principal component analysis (MPCA) and DISSIM, have been proposed. In MPCA and DISSIM, an abnormal operation can be detected by monitoring the directions(More)
In order to control product compositions in a multicomponent distillation column, the distillate and bottom compositions are estimated from on-line measured process variables. In this paper, inferential models for estimating product compositions are constructed using dynamic Partial Least Squares (PLS) regression, on the basis of simulated time series data.(More)
Multivariate statistical process control (MSPC) has been widely used for process monitoring. When a fault is detected, it is important to identify an actual cause of the fault. Fault identification methods are classified into two groups by availability of historical data sets obtained from faulty situations. When such historical data sets are not available,(More)
Univariate and multivariate statistical process control (USPC and MSPC) methods have been widely used in process industries for fault detection. However, their practicability and achievable performance are limited due to the assumptions that a process is operated in a steady state and that variables are normally distributed. In the present work, external(More)
Development of quality estimation models using near infrared spectroscopy (NIRS) and multivariate analysis has been accelerated as a process analytical technology (PAT) tool in the pharmaceutical industry. Although linear regression methods such as partial least squares (PLS) are widely used, they cannot always achieve high estimation accuracy because(More)
The usefulness of infrared-reflection absorption spectroscopy (IR-RAS) for the rapid measurement of residual drug substances without sampling was evaluated. In order to realize the highly accurate rapid measurement, locally weighted partial least-squares (LW-PLS) with a new weighting technique was developed. LW-PLS is an adaptive method that builds a(More)