Shinji Fukudome

Learn More
Tetraethylammonium (TEA)-sensitive potassium currents in the cochlear inner hair cells (IHCs) possess the kinetics of fast inactivation. Some enzymes using for IHCs dissociation affect these inactivation kinetics. IHCs were dissociated from guinea-pig cochlea by 1 mg/ml trypsin or 0.25 mg/ml protease VIII, and the properties of the K+ currents were compared(More)
Multipotent cochlear neural progenitors (CNPs) in the organ of Corti hold the promise for cell replacement in degenerative hearing disorders. However, not much is known about the CNPs and the specific conditions for their differentiation. Here we isolate the CNPs from the postnatal day 1 organ of Corti in mice and demonstrate their capability to self-renew(More)
Using conventional whole-cell voltage-clamp recordings, we examined the 4-aminopyridine (4-AP)- and tetraethylammonium (TEA)-sensitive K(+) currents in the cochlear inner hair cells (IHCs) of guinea pigs. 4-AP-sensitive currents were activated slowly and sustained the same current level, whereas TEA-sensitive currents were activated rapidly, followed by(More)
Vibrio vulnificus hemolysin (VVH), a pore forming toxin, is thought to be a virulence factor of this bacterium. It is well known that VVH induces apoptosis as well as cell lysis in susceptible target cells. Although pore formation is an essential step in cell lysis, it is unknown whether this step is necessary for VVH-induced apoptosis. In this study,(More)
IMPORTANCE The aggressive growth of cholesteatoma in the middle ear involves the angiogenesis of the cholesteatomal perimatrix. However, which transcription factor is involved in this process remains unclear. OBJECTIVE To identify a transcription factor that supports the aggressive growth of cholesteatoma by controlling the angiogenesis of cholesteatoma(More)
Sonic hedgehog (SHH) is essential for the development of the cochlear duct that harbors the organ of Corti. However, little is known about the molecular signaling pathway through which SHH promotes the development of the organ of Corti, especially cochlear sensory epithelial cells. In this study, we demonstrated that SHH contributes to the differentiation(More)
Vibrio vulnificus hemolysin (VVH) is thought to be a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins. To date, the structure-function relationships of CDCs produced by Gram-negative bacteria remain largely unknown. We show here that the aromatic ring of phenylalanine residue conserved in Vibrionaceae hemolysins is essential(More)
Sensory epithelial cells in the organ of Corti survive throughout life. However, factors for sensory epithelial cell survival are poorly understood at the present time. Here we demonstrated that brain-derived neurotrophic factor (BDNF), a factor committing to neuronal survival, promotes the survival of sensory epithelial cells (OC1) through(More)
Hearing loss (deafness) affects approximately 250 million people globally. The major cause of deafness is loss of hair cells and spiral ganglion neurons due to aging, antibiotic use, noise exposure, and genetic defects. At the present time, there is no effective method for restoration of hearing biologically. Cochlear stem cells/progenitors (CSCs),(More)
  • 1