Shining Zhu

Learn More
On the basis of a novel phase modulation method by in-plane diffraction processes, a well-designed nanoarray on metal surface is proposed to realize a broad band focusing (bandwidth ∼100 nm) and a demultiplexing element (resolution ∼12 nm) of surface plasmon polariton (SPP) waves. Moreover, sublattice arrays are developed to achieve an improved(More)
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the(More)
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and(More)
Tailoring optical response using periodic nanostructures is one of the key issues in the current research on functional composite materials. The anomalous light transmission through metallic films that have a regular array of submicrometer holes has stimulated much interest. This interest stems from both the underlying physics and also the perceived(More)
Graphene oxide-based aerogels with carefully tailored properties are developed to enable efficient solar steam generation. Aerogels, with inherent porous structures, are excellent thermal insulators and provide channels for water supply and vapor escape. With enhanced absorption and hydrophilicity by incorporation of carbon nanotubes and sodium alginate,(More)
Pulsed lasers operating in the mid-infrared (3-20 μm) are important for a wide range of applications in sensing, spectroscopy, imaging and communications. Despite recent advances with mid-infrared gain platforms, the lack of a capable pulse generation mechanism remains a significant technological challenge. Here we show that bulk Dirac fermions in molecular(More)
Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a(More)
We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switched fiber laser. The system simplicity and wideband wavelength tunability combined with the ability to(More)
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat(More)