Shinichiro Takayama

Learn More
In Brassica, two self-incompatibility genes, encoding SLG (S locus glycoprotein) and SRK (S-receptor kinase), are located at the S locus and expressed in the stigma. Recent molecular analysis has revealed that the S locus is highly polymorphic and contains several genes, i.e., SLG, SRK, the as-yet-unidentified pollen S gene(s), and other linked genes. In(More)
Many higher plants have evolved self-incompatibility mechanisms to prevent self-fertilization. In Brassica self-incompatibility, recognition between pollen and the stigma is controlled by the S locus, which contains three highly polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also called S-locus cysteine-rich protein; SCR) and S-locus(More)
The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1(More)
A multidisciplinary approach was taken to investigate the intracellular locations of the 26-kDa integral membrane protein encoded by the bcl-2 gene. Subcellular fractionation analysis of a t(14;18)-containing lymphoma cell line revealed the presence of Bcl-2 protein in nuclear, heavy-membrane, and light-membrane fractions but not in cytosol. Sedimentation(More)
Many flowering plants possess self-incompatibility (SI) systems that prevent inbreeding. In Brassica, SI is controlled by a single polymorphic locus, the S locus. Two highly polymorphic S locus genes, SLG (S locus glycoprotein) and SRK (S receptor kinase), have been identified, both of which are expressed predominantly in the stigmatic papillar cell. We(More)
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their(More)
BAG-1 is a multifunctional protein that blocks apoptosis and interacts with several types of proteins, including Bcl-2 family proteins, the kinase Raf-1, certain tyrosine kinase growth factor receptors, and steroid hormone receptors, possibly by virtue of its ability to regulate the Hsp70/Hsc70 family of molecular chaperones. Two major forms of the human(More)
BAG-1 is a regulator of heat shock protein (Hsp) 70/Hsc70 family proteins that interacts with steroid hormone receptors. The recently identified BAG-1 long (BAG-1L) protein, an isoform of BAG-1 that arises from translation initiation at a noncanonical CUG codon, was co-immunoprecipitated with androgen receptors (AR) from LNCaP prostate cancer cells and(More)
Adhesion of pollen grains to the stigmatic surface is a critical step during sexual reproduction in plants. In Brassica, S locus-related glycoprotein 1 (SLR1), a stigma-specific protein belonging to the S gene family of proteins, has been shown to be involved in this step. However, the identity of the interacting counterpart in pollen and the molecular(More)
Heat Shock Protein 70 kDa (Hsp70) family molecular chaperones play critical roles in protein folding and trafficking in all eukaryotic cells. The mechanisms by which Hsp70 family chaperones are regulated, however, are only partly understood. BAG-1 binds the ATPase domains of Hsp70 and Hsc70, modulating their chaperone activity and functioning as a(More)