Shingo Noguchi

Kazuhiro Yatera7
Kei Yamasaki7
Hiroshi Mukae7
Toshinori Kawanami7
Hiroshi Ishimoto6
7Kazuhiro Yatera
7Kei Yamasaki
7Hiroshi Mukae
7Toshinori Kawanami
6Hiroshi Ishimoto
Learn More
BACKGROUND Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired(More)
BACKGROUND The causative pathogens of healthcare-associated pneumonia (HCAP) remain controversial, and the use of conventional cultivation of sputum samples is occasionally inappropriate due to the potential for oral bacterial contamination. It is also sometimes difficult to determine whether methicillin-resistant Staphylococcus aureus (MRSA) is a true(More)
Cyanobacterial 1-butanol production is an important model system for direct conversion of CO2 to fuels and chemicals. Metabolically-engineered cyanobacteria introduced with a heterologous Coenzyme A (CoA)-dependent pathway modified from Clostridium species can convert atmospheric CO2 into 1-butanol. Efforts to optimize the 1-butanol pathway in Synechococcus(More)
During the assessments of the correlation of the diseases and the microbiota of various clinical specimens, unique 16S ribosomal RNA (rRNA) gene sequences (less than 80% similarity to known bacterial type strains) were predominantly detected in a bronchoalveolar lavage fluid (BALF) specimen from a patient with chronic lower respiratory tract infection. The(More)
BACKGROUND Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia. METHODS We evaluated the bacterial microbiota in bronchoalveolar lavage fluid (BALF) using the clone library(More)
BACKGROUND The Streptococcus anginosus group (SAG) play important roles in respiratory infections. It is ordinarily difficult to distinguish them from contaminations as the causative pathogens of respiratory infections because they are often cultured in respiratory specimens. Therefore, it is important to understand the clinical characteristics and(More)
BACKGROUND Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to(More)
  • 1