Learn More
Polyploidy, the doubling of genomic content, is a widespread feature, especially among plants, yet its macroevolutionary impacts are contentious. Traditionally, polyploidy has been considered an evolutionary dead end, whereas recent genomic studies suggest that polyploidy has been a key driver of macroevolutionary success. We examined the consequences of(More)
BACKGROUND We undertook genetic analysis of three affected families to identify the cause of dominantly-inherited CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome. METHODS We used whole-exome sequencing to analyze two families affected with CAPOS syndrome, including the original family reported in(More)
While the proliferation of the species-rich teleost fish has been ascribed to an ancient genome duplication event at the base of this group, the broader impact of polyploidy on fish evolution and diversification remains poorly understood. Here, we investigate the association between polyploidy and diversification in several fish lineages: the sturgeons(More)
Recent sequencing efforts have described the mutational landscape of the pediatric brain tumor medulloblastoma. Although MLL2 is among the most frequent somatic single nucleotide variants (SNV), the clinical and biological significance of these mutations remains uncharacterized. Through targeted re-sequencing, we identified mutations of MLL2 in 8 % (14/175)(More)
Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia,(More)
The Asteraceae (Compositae) is a large family of over 20,000 wild, weedy, and domesticated species that comprise approximately 10% of all angiosperms, including annual and perennial herbs, shrubs and trees, and species on every continent except Antarctica. As a result, the Asteraceae provide a unique opportunity to understand the evolutionary genomics of(More)
  • 1