Learn More
The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly(More)
BACKGROUND Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. METHODS We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline(More)
A recent report indicated that the TR4 nuclear receptor might suppress the prostate cancer (PCa) initiation via modulating the DNA damage/repair system. Knocking-out peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that shares similar ligands/activators with TR4, promoted PCa initiation. Here we found 9% of PCa patients have one(More)
Testicular nuclear receptor 4 (TR4), also known as NR2C2 (nuclear receptor subfamily 2, group C, member 2), is a transcriptional factor and a member of the nuclear receptor family. TR4 was initially cloned from human and rat hypothalamus, prostate, and testes libraries. For almost two decades, its specific tissue distribution, genomic organization, and(More)
The insulin sensitizers, thiazolidinediones (TZDs), have been used as anti-diabetic drugs since the discovery of their ability to alter insulin resistance through transactivation of peroxisome proliferator-activated receptors (PPARs). However, their side effects in hepatitis, cardiovascular diseases, and bladder cancer resulted in some selling restrictions(More)
Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression. In general, TR4 can inhibit the PCa carcinogenesis. However, when PPARγ is(More)
Prostatitis is a common disease contributing to 8% of all urologist visits. Yet the etiology and effective treatment remain to be further elucidated. Using a non-obese diabetes mouse model that can be induced by autoimmune response for the spontaneous development of prostatitis, we found that injection of the ASC-J9® at 75 mg/Kg body weight/48 hours led to(More)
  • 1