Shin-ichiro Umemura

Learn More
We have demonstrated a personal identification system that is based on near-infrared finger vein patterns. Finger vein patterns of 678 volunteers are acquired by transmitting near-infrared light through a finger and capturing the image with a CCD camera. These vein patterns are enhanced by a background-reduction filter. The similarity between two patterns(More)
This study was an investigation of arterial contractility in response to high-intensity focused ultrasound (HIFU) and of histologic changes to the artery with various intensities of HIFU. We constructed a prototype HIFU transducer in combination with an imaging probe that provides color Doppler imaging and Doppler velocimetry. HIFU was applied through the(More)
To obtain an optimal condition for ultrasound (US)-induced apoptosis that could be useful for cancer therapy, we applied low intensity pulsed US to sonicate U937 cells in vitro. Cells were then incubated at different time intervals before measuring apoptosis. The apoptosis was assessed by DNA fragmentation and phosphatidylserine externalization. The pattern(More)
The sonodynamically induced antitumor effect of porfimer sodium (PF) was evaluated on a chemically induced mammary tumor in Sprague-Dawley rats. The timing of 24 h after the administration of PF was chosen for the ultrasonic exposure, based on pharmacokinetic analysis of the PF concentrations in the tumor, plasma, skin and muscle. At a PF dose not less than(More)
The ultrasonic power absorbed by a microbubble in its continuous wave response is estimated through numerically solving a version of the Rayleigh-Plesset equation. At an ultrasonic frequency of 3 MHz, a resonant microbubble, approximately 1.1 microm in radius, showed an absorption cross section of about 0.005 mm2 in its low power response. This estimation(More)
A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window(More)
Cavitation bubbles are known to accelerate therapeutic effects of ultrasound. Although negative acoustic pressure is the principle factor of cavitation, positive acoustic pressure has a role for bubble cloud formation at a high intensity of focused ultrasound when cavitation bubbles provide pressure release surfaces converting the pressure from highly(More)
BACKGROUND Functionalized fullerenes, such as polyhydroxy fullerenes (PHF), have attracted particular attention due to their water solubility and their potential application in tumor imaging and therapy as carbon nanomaterials. In this study, the sonodynamically-induced antitumor effect of PHF was investigated. MATERIALS AND METHODS(More)
Sonodynamically induced antitumor effect of a gallium porphyrin complex, ATX-70 was evaluated on a chemically induced mammary tumor in Sprague–Dawley rats. The timing of 24 h after the administration of ATX-70 was chosen for ultrasonic exposure, based on pharmacokinetic analysis of ATX-70 concentrations in the tumor, plasma, skin, and muscle. At an ATX-70(More)
The sonodynamically induced antitumor effect of Photofrin II (PF), was evaluated in mice bearing colon 26 carcinoma. In order to find the optimum timing for ultrasonic exposure after the administration of PF, the PF concentrations in the plasma, skin, muscle, and tumor were measured. The antitumor effect was estimated by measuring the tumor size. Since the(More)