Shin ichiro Sano

Learn More
Brain-derived neurotrophic factor (BDNF) activates a variety of signaling molecules to exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. Previously, we have suggested that BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1) is(More)
Circadian rhythms of mammals are generated by a circadian oscillation of master pacemaker genes in the suprachiasmatic nucleus of the hypothalamus (SCN), and entrained by environmental factors such as 24-h light-dark cycles. We have previously shown that light exposure during the dark period enhanced tyrosine phosphorylation of brain immunoglobulin-like(More)
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, promotes differentiation and survival and regulates plasticity of various types of neurons. BDNF binds to TrkB, a receptor tyrosine kinase, which results in the activation of a variety of signaling molecules to exert the various functions of BDNF. Shp-2, a Src homology 2(More)
Shp2, a protein tyrosine phosphatase possessing SH2 domains, is utilized in the intracellular signaling of various growth factors. Shp2 is highly expressed in the CNS. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, which also shows high levels of expression in the CNS, exerts neurotrophic and neuromodulatory effects in CNS(More)
The activity of ammoniagenesis from guanine nucleotides was found to increase significantly in rat brain after infusion of kainic acid into the striatum. Among the enzymes involved in degrading guanine nucleotides, nucleoside diphosphatase was markedly increased in the lesioned striatum. The enzyme activity began to increase 2 days after the infusion, and(More)
  • 1