Shin-ichiro M. Nomura

Learn More
The cellular environment differs from that of reconstituted materials mainly because of the presence of highly condensed biomacromolecules. To mimic the environment and conditions in living cells, we developed a method to prepare additive-free, highly concentrated cell extracts. First, we verified the requirement for specific salts and buffers for(More)
This paper describes design and empirically study of a communication interface in molecular communication. The communication interface hides the characteristics of the molecules during the propagation from the sender to a receiver to allow a generic transport of molecules independent of the characteristics. The authors of this paper propose a communication(More)
Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription-translation-replication process by autonomous expression of chromosomal DNA replication machineries from a(More)
Chemical control of the spontaneous motion of a reactive oil droplet moving on a glass substrate under an aqueous phase is reported. Experimental results show that the self-motion of an oil droplet is confined on an acid-treated glass surface. The transient behavior of oil-droplet motion is also observed with a high-speed video camera. A mathematical model(More)
Molecular communication [1]-[2] is an emerging communication paradigm that uses molecules as a communication medium. Molecular communication allows biological and artificially created nano- or cell-scale devices to communicate with each other. In molecular communication, senders encode information onto molecules (called information molecules), and(More)
Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o) emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC)(More)
Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable(More)
We introduce two autonomous chemical reaction-diffusion models that can emulate the behavior of specific cellular automata. One model conducts formation of a 3-color checker-board pattern using an abstract chemical reaction network. The other model is based on a DNA reaction-diffusion system that is capable of emulating a Turing-complete one-dimensional(More)
Toward reconstitution of living cells by artificial cells technology, it is critical process to understand the differences between mixtures of biomolecules and living cells. For the aim, we have developed procedures for preparation of an additive-free cell extract (AFCE) and for concentrating biomacromolecules in artificial cells. In this review, we(More)
Prototype artificial cell models with designed functional molecules are presented here. Artificial molecular devices based on a giant liposome were prepared to obtain specific properties that cannot be obtained from natural cells. In this context, artificial cell research is seen an extension of " molecular robotics " research. Cooperative and integrated(More)