Shin-ichiro Ei

Learn More
Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In(More)
An important feature of human locomotor control is the instant adaptability to unpredictable changes of conditions surrounding the locomotion. Humans, for example, can seamlessly adapt their walking gait following a sudden ankle impairment (e.g., as a result of an injury). In this paper, we propose a theoretical study of the mechanisms underlying flexible(More)
  • 1