Shin'ichi Saito

Learn More
The tumour suppressor p53 becomes activated in response to upstream stress signals, such as DNA damage, and causes cell-cycle arrest or apoptosis. Here we report a novel role for p53 in the differentiation of mouse embryonic stem cells (ESCs). p53 binds to the promoter of Nanog, a gene required for ESC self-renewal, and suppresses Nanog expression after DNA(More)
SIRT1 is a mammalian homolog of the Saccharomyces cerevisiae chromatin silencing factor Sir2. Dominant-negative and overexpression studies have implicated a role for SIRT1 in deacetylating the p53 tumor suppressor protein to dampen apoptotic and cellular senescence pathways. To elucidate SIRT1 function in normal cells, we used gene-targeted mutation to(More)
Phosphorylation of p53 at Ser 46 was shown to regulate p53 apoptotic activity. Here we demonstrate that homeodomain-interacting protein kinase-2 (HIPK2), a member of a novel family of nuclear serine/threonine kinases, binds to and activates p53 by directly phosphorylating it at Ser 46. HIPK2 localizes with p53 and PML-3 into the nuclear bodies and is(More)
Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop.(More)
Transcriptional control by beta-catenin and lymphoid enhancer-binding factor 1 (LEF1)/T cell factor regulates proliferation in stem cells and tumorigenesis. Here we provide evidence that transcriptional co repressor homeodomain interacting protein kinase 2 (HIPK2) controls the number of stem and progenitor cells in the skin and the susceptibility to develop(More)
The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicative life span of SIRT1-deficient MEFs(More)
The mammalian Chk2 kinase is thought to mediate ATM-dependent signaling in response to DNA damage. The physiological role of mammalian Chk2 has now been investigated by the generation of Chk2-deficient mice. Although Chk2(-/-) mice appeared normal, they were resistant to ionizing radiation (IR) as a result of the preservation of splenic lymphocytes.(More)
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 is a transcriptional activator that mediates the switch between the latent and the lytic forms of EBV infection. It was previously reported that BZLF1 inhibits p53 transcriptional function in reporter gene assays. Here we further examined the effects of BZLF1 on p53 function by using a(More)
The human ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho GTPases and regulates cytokinesis. Although the oncogenic form of ECT2 contains an N-terminal truncation, it is not clear how the structural abnormality of ECT2 causes malignant transformation. Here we show that both the removal of the negative regulatory domain and(More)
Free radical-induced cellular stress contributes to cancer during chronic inflammation. Here, we investigated mechanisms of p53 activation by the free radical, NO. NO from donor drugs induced both ataxia-telangiectasia mutated (ATM)- and ataxia-telangiectasia mutated and Rad3-related-dependent p53 posttranslational modifications, leading to an increase in(More)