Takenari Yamashita20
Takuto Hideyama14
Hitoshi Aizawa9
Yukio Kawahara9
20Takenari Yamashita
14Takuto Hideyama
9Hitoshi Aizawa
9Yukio Kawahara
Learn More
The aetiology of sporadic amyotrophic lateral sclerosis (ALS), a fatal paralytic disease, is largely unknown. Here we show that there is a defect in the editing of the messenger RNA encoding the GluR2 subunit of glutamate AMPA receptors in the spinal motor neurons of individuals affected by ALS. This failure to swap an arginine for a glutamine residue at a(More)
In human brain, developmental up-regulation in RNA editing at the Q/R site was evident in GluR5 and GluR6, but GluR2 editing in the white matter was down-regulated. Each ADAR mRNA expression was up-regulated in the gray matter, whereas differently regulated in the white matter. ADAR2 mRNA was not overexpressed in the brains of Down's syndrome subjects, nor(More)
It has been repeatedly reported that spinal motor neurons are selectively vulnerable to AMPA receptor-mediated excitotoxicity. Therefore, identifying the uniqueness of AMPA receptors that are expressed on motor neurons, especially in individuals affected with sporadic amyotrophic lateral sclerosis (ALS) is essential for elucidating the etiology of this(More)
Both the appearance of cytoplasmic inclusions containing phosphorylated TAR DNA-binding protein (TDP-43) and inefficient RNA editing at the GluR2 Q/R site are molecular abnormalities observed specifically in motor neurons of patients with sporadic amyotrophic lateral sclerosis (ALS). The purpose of this study is to determine whether a link exists between(More)
Among the extensively occurring adenosine to inosine (A-to-I) conversions in RNA, RNA editing at the GluR2 Q/R site is crucial for the survival of mammalian organisms. Editing at this site is incomplete in the motor neurons of patients with sporadic amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting on RNA type 2 (ADAR2) specifically mediates(More)
Compelling evidence supports contributions of glutamate receptor overactivation ('excitotoxicity') to neurodegeneration in both acute conditions, such as stroke, and chronic neurodegenerative conditions, such as amyotrophic lateral sclerosis. However, anti-excitotoxic therapeutic trials, which have generally targeted highly Ca2+ permeable NMDA-type(More)
One plausible hypothesis for selective neuronal death in sporadic amyotropic lateral sclerosis (ALS) is excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, which are a subtype of ionotropic glutamate receptors. The Ca2+ conductance of AMPA receptors differs markedly depending on whether the GluR2 (or GluR-B)(More)
GluR2 is a subunit of the AMPA receptor, and the adenosine for the Q/R site of its pre-mRNA is converted to inosine (A-to-I conversion) by the enzyme called adenosine deaminase acting on RNA 2 (ADAR2). Failure of A-to-I conversion at this site affects multiple AMPA receptor properties, including the Ca(2+) permeability of the receptor-coupled ion channel,(More)
We present systematic evidence for the origins of 1/f -type temporal scaling in human heart rate. The heart rate is regulated by the activity of two branches of the autonomic nervous system: the parasympathetic (PNS) and the sympathetic (SNS) nervous systems. We examine alterations in the scaling property when the balance between PNS and SNS activity is(More)
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset fatal motor neuron disease. In spinal motor neurons of patients with sporadic ALS, normal RNA editing of GluA2, a subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, is inefficient. Adenosine deaminase acting on RNA 2 (ADAR2) specifically mediates RNA(More)