Learn More
Neurogenesis occurs throughout adulthood in the mammalian brain. Neural stem cells (NSCs) exist in three distinct areas of the brain: the subventricular zone, the olfactory bulb, and the dentate gyrus of the hippocampus. MicroRNAs (miRNAs) are small noncoding RNA molecules that posttranscriptionally regulate gene expression. Epigenetic regulation of gene(More)
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy(More)
Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological(More)
Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult(More)
Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional(More)
Oxidative stress-induced mitochondrial dysfunction is associated with age-related and disuse-induced skeletal muscle atrophy. However, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) during muscle fiber atrophy remains to be elucidated. In this study, we examined whether deficiency of Nrf2, a master regulator of antioxidant transcription,(More)
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on(More)
Neurons have the intrinsic capacity to produce insulin, similar to pancreatic cells. Adult neural stem cells (NSCs), which give rise to functional neurons, can be established and cultured not only by intracerebral collection, which requires difficult surgery, but also by collection from the olfactory bulb (OB), which is relatively easy. Adult neurogenesis(More)
  • 1