Learn More
Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric(More)
We present the simulation, implementation, and measurement of a polarization insensitive broadband resonant terahertz metamaterial absorber. By stacking metal-insulator layers with differing structural dimensions, three closely positioned resonant peaks are merged into one broadband absorption spectrum. Greater than 60% absorption is obtained across a(More)
We have developed low-loss polymer artificial dielectric quarter wave plates (QWP) operating at 2.6, 3.2 and 3.8 THz. The QWPs are imprinted on high density polyethylene (HDPE) using silicon masters. The grating period for the quarter wave plates is 60 microm. 330 microm, 280 microm and 230 microm deep gratings are used to obtain a pi/2 phase retardance(More)
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable(More)
We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic(More)
We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 μl/min. Phospholipid bilayers are(More)
We present a device and method for performing vector transmission spectroscopy on biological specimens at terahertz (THz) frequencies. The device consists of artificial dielectric birefringence obtained from silicon microfluidic grating structures. The device can measure the complex dielectric function of a liquid, across a wide THz band of 2 to 5.5 THz,(More)
We describe a terahertz single pixel imaging system based on a Nipkow disk. Nipkow disks have been used for fast scanning imaging systems since the first experimental television was invented in 1926. In our work, a Nipkow disk with 24 scanning lines was used to provide an axial resolution of 2 mm/pixel. We also show that by implementing a microscanning(More)
We present a sensing system operating at millimetre (mm) waves in transmission mode that can measure glucose level changes based on the complex permittivity changes across the signal path. The permittivity of a sample can change significantly as the concentration of one of its substances varies: for example, blood permittivity depends on the blood glucose(More)
We have designed and fabricated a dual-band resonator in the terahertz frequency range on high-resistivity silicon. The device is designed to show resonances at 2.6 and 4.3 THz using the finite-difference time-domain modeling method. The characteristics of the fabricated device have been examined by using a Fourier-transform IR spectrometer. Measured(More)