Shima Salehi

Learn More
In this paper, we describe a set of user studies within the Bifocal Modeling (BM) framework. BM juxtaposes physical and computer models using sensor-based and computer modeling technologies, highlighting the discrepancies between ideal and real systems. When creating bifocal models, students build both a physical model with sensors of a given scientific(More)
This paper introduces Process Pad, an interactive, low-cost multi-touch tabletop platform designed to capture students' thought process and facilitate their explanations. The goal of Process Pad is to elicit students' think-aloud narratives that would otherwise be tacit, in other words, "learn to explain," and "explain to learn." Our focus is on identifying(More)
Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to conceptual(More)
In this study we investigated the effects of using physical manipulatives (PM) and virtual manipulatives (VM) on students' understanding of electronics. In our experiment, all participants completed two similar tasks, one with a tangible toolkit and another with a computer simulation. Both systems shared the same functionalities. Half of the participants(More)
In this paper we will examine students' meta-modeling knowledge in the context of their participation in a Bifocal Modeling activity. Bifocal Modeling is an inquiry-based approach for science learning, which incorporates both physical experimentation and virtual modeling. The current study combines three separate case studies of students participating in(More)
In this paper we describe a pilot study of an approach to STEM inquiry learning called Bifocal Modelling (Blikstein, 2010) with a group of high school students studying bacterial growth. Students grew and measured real bacteria, and then collaboratively designed a conceptual agent-based model of bacteria. Observations and student notes suggest that the(More)
This paper introduces Process Pad, an interactive, low-cost multi-touch tabletop platform designed to capture students' thought process and facilitate their explanations. Process Pad is designed to help students improve their thinking skills and meta-cognition in various subjects. The system is intended to dynamically externalize how a student arrives at(More)
In this pilot study we investigated the effect of technological platform on the quality of students' cognition when analyzing a computer simulation. As an indicator of performance, we measured the percentage of ideal cycles of cognition; an ideal cycle of cognition is defined as having three distinct steps: planning an action, executing it and evaluating(More)
In this paper we describe a pilot study of an approach to STEM inquiry learning called Bifocal Modeling (Blikstein, 2010) with a group of high school students studying bacterial growth. Students grew real bacteria, and then collaboratively designed a conceptual agent-based model of bacteria to mimic the observed growth. Observations and student notes(More)
  • 1