Learn More
MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation, and apoptosis. However, the functional importance of individual miRs in controlling spermatogonial stem cell (SSC) homeostasis has not been investigated.(More)
Glioblastoma multiforme (GBM) and the mesenchymal GBM subtype in particular are highly malignant tumors that frequently exhibit regions of severe hypoxia and necrosis. Because these features correlate with poor prognosis, we investigated microRNAs whose expression might regulate hypoxic GBM cell survival and growth. We determined that the expression of(More)
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is(More)
Arterial stiffening is a risk factor for cardiovascular disease, but how arteries stay supple is unknown. Here, we show that apolipoprotein E (apoE) and apoE-containing high-density lipoprotein (apoE-HDL) maintain arterial elasticity by suppressing the expression of extracellular matrix genes. ApoE interrupts a mechanically driven feed-forward loop that(More)
Aging is driven by changes of the epigenetic state that are only partially understood. We performed a comprehensive epigenomic analysis of the pancreatic β cell, key player in glucose homeostasis, in adolescent and very old mice. We observe a global methylation drift resulting in an overall more leveled methylome in old β cells. Importantly, we discover(More)
The Cub and Sushi Multiple Domains-1 (CSMD1) is a tumor suppressor gene on 8p23.2, where allelic loss is both frequent and associated with poor prognosis in head and neck squamous cell carcinoma (HNSCC). To understand the extent of CSMD1 aberrations in vivo, we characterized 184 primary tumors from the head and neck, lung, breast and skin for gene copy(More)
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information(More)
p27(kip1) (p27) is a cdk-inhibitory protein with an important role in the proliferation of many cell types. SCF(Skp2) is the best studied regulator of p27 levels, but Skp2-mediated p27 degradation is not essential in vivo or in vitro. The molecular pathway that compensates for loss of Skp2-mediated p27 degradation has remained elusive. Here, we combine(More)
Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting. We investigated(More)
Inactivation of the von-Hippel Lindau (VHL) tumor suppressor gene occurs in 90% of human clear cell renal cell carcinomas (ccRCC) and leads to the stable expression of the hypoxia-inducible factors HIF1α and HIF2α. The constitutive expression of HIF1α in a majority of VHL-deficient tumors is counterintuitive, given that HIF1α functions as a tumor suppressor(More)