Learn More
We report the complete sequence of an extreme halophile, Halobacterium sp. NRC-1, harboring a dynamic 2,571,010-bp genome containing 91 insertion sequences representing 12 families and organized into a large chromosome and 2 related minichromosomes. The Halobacterium NRC-1 genome codes for 2,630 predicted proteins, 36% of which are unrelated to any(More)
The genome of the halophilic archaeon Halobacterium sp. NRC-1 and predicted proteome have been analyzed by computational methods and reveal characteristics relevant to life in an extreme environment distinguished by hypersalinity and high solar radiation: (1) The proteome is highly acidic, with a median pI of 4.9 and mostly lacking basic proteins. This(More)
We report on the identification and first cloning of an autonomously replicating sequence element from the chromosome of an archaeon, the extreme halophile Halobacterium strain NRC-1. The putative replication origin was identified by association with the orc7 gene and replication ability in the host strain, demonstrated by cloning into a nonreplicating(More)
The extremely halophilic archaeon Halobacterium sp. NRC-1 can grow phototrophically by means of light-driven proton pumping by bacteriorhodopsin in the purple membrane. Here, we show by genetic analysis of the wild type, and insertion and double-frame shift mutants of Bat that this transcriptional regulator coordinates synthesis of a structural protein and(More)
Extremely halophilic archaea are highly resistant to multiple stressors, including radiation, desiccation and salinity. To study the basis of stress resistance and determine the maximum tolerance to ionizing radiation, we exposed cultures of the model halophile Halobacterium sp. NRC-1 to four cycles of irradiation with high doses of 18-20 MeV electrons. Two(More)
To facilitate the functional genomic analysis of an archaeon, we have developed a homologous gene replacement strategy for Halobacterium salinarum based on ura3, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate decarboxylase. H. salinarum was shown to be sensitive to 5-fluoroorotic acid (5-FOA), which can select for mutations in(More)
We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An(More)
BACKGROUND The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and(More)
Since the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity,(More)