Learn More
Cloze-style queries are representative problems in reading comprehension. Over the past few months, we have seen much progress that utilizing neural network approach to solve Cloze-style questions. In this paper, we present a novel model called attention-over-attention reader for the Cloze-style reading comprehension task. Our model aims to place another(More)
Robustness is one of the most important topics for automatic speech recognition (ASR) in practical applications. Monaural speech separation based on computational auditory scene analysis (CASA) offers a solution to this problem. In this paper, a novel system is presented to separate the monaural speech of two talkers. Gaussian mixture models (GMMs) and(More)
This paper presents an improved particle swarm optimization (PSO) and discrete PSO (DPSO) with an enhancement operation by using a self-adaptive evolution strategies (ES). This improved PSO/DPSO is proposed for joint optimization of three-layer feedforward artificial neural network (ANN) structure and parameters (weights and bias), which is named ESPNet.(More)
This paper presents a new evolutionary artificial neural network (ANN) algorithm named IPSONet that is based on an improved particle swarm optimization (PSO). The improved PSO employs parameter automation strategy, velocity resetting, and crossover and mutations to significantly improve the performance of the original PSO algorithm in global search and(More)
Ensemble classification – combining the results of a set of base learners – has received much attention in the machine learning community and has demonstrated promising capabilities in improving classification accuracy. Compared with neural network or decision tree ensembles, there is no comprehensive empirical research in support vector machine (SVM)(More)
Reading comprehension has embraced a booming in recent NLP research. Several institutes have released the Cloze-style reading comprehension data, and these have greatly accelerated the research of machine comprehension. In this work, we firstly present Chinese reading comprehension datasets, which consist of People Daily news dataset and Children’s Fairy(More)
Most production scheduling problems, including the standard flexible job-shop scheduling problem (FJSP), assume that machines are continuously available. However, in most realistic situations, machines may become unavailable during certain periods due to preventive maintenance (PM). In this paper, a flexible job-shop scheduling problem with machine(More)
AIM OF STUDY Diabetes mellitus is frequently combined with vascular diseases, which are associated with the expression of vascular endothelial growth factor (VEGF). An approach that can reverse the induction of VEGF by hyperglycemia may potentially benefit the outcome of diabetic patients. Therefore, in the present study, we investigated the effect of(More)
Flexible manufacturing systems (FMSs) are highly automated and require effective scheduling approaches to improve the system performance and integrate various control decision-making activities. In this paper, a multi-agent approach integrated with a filteredbeam-search (FBS)-based heuristic algorithm is proposed to study the dynamic scheduling problem in a(More)
Artificial neural networks are powerful models, which have been widely applied into many aspects of machine translation, such as language modeling and translation modeling. Though notable improvements have been made in these areas, the reordering problem still remains a challenge in statistical machine translations. In this paper, we present a novel neural(More)