Learn More
When we interact with objects in the world, the forces we exert are finely tuned to the dynamics of the situation. As our sensors do not provide perfect knowledge about the environment, a key problem is how to estimate the appropriate forces. Two sources of information can be used to generate such an estimate: sensory inputs about the object and knowledge(More)
The primate brain features specialized areas devoted to processing of faces, which human imaging studies localized in the superior temporal sulcus (STS) and ventral temporal cortex. Studies in macaque monkeys, in contrast, revealed face selectivity predominantly in the STS. While this discrepancy could result from a true species difference, it may simply be(More)
The use of functional magnetic resonance imaging (fMRI) in alert non-human primates is of great potential for research in systems neuroscience. It can be combined with invasive techniques and afford better understanding of non-invasively acquired brain imaging signals in humans. However, the difficulties in optimal application of alert monkey fMRI are(More)
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425-2430].(More)
Increasingly 7 T scanners are used for fMRI of humans and non-human primates, promising improvements in signal-to-noise, spatial resolution and specificity. A disadvantage of fMRI at 7 T, but already at 3 T, is that susceptibility artifacts from air-filled cavities like the ear canal and nasal cavity cause signal loss and distortion. This limits the(More)
Measuring eye movements (EMs) using the search-coil eye-tracking technique is superior to video-based infrared methods [Collewijn H, van der Mark F, Jansen TC. Precise recording of human eye movements. Vision Res 1975;15(3):447-50], which suffer from the instability of pupil size, blinking behavior and lower temporal resolution. However, no conventional(More)
Previous imaging work has identified a frontoparietal network in the human brain involved in many different cognitive functions, as well as in simple updates of attended information. To determine whether a similar network is present in the monkey brain and direct future electrophysiological recordings, we examined the activation of frontoparietal areas(More)
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition(More)
  • 1